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The objectives of the research are (i) to develop a stochastic-dynamic multiscale model of several key

hydrologic variables related to land-atmosphere interaction for assimilating measurements at di�erent scales

obtained from satellites; and (ii) to characterize the multiscale feedback interaction between these processes.

So far we have developed the multiple scale stochastic-dynamic model and applied it to a scalar valued

near-surface soil moisture distribution using data from the Washita'92 experiment. Although the model has

been tested for a scalar valued process as a �rst step, the model development is quite general amd applicable

to processes with several interacting variables.

The model developed is motivated by the following three issues:

1. Given measurements at two or more scales (for example, using remote sensing and in situ techniques),

how can we obtain optimal consistent estimates across scales?

This problem has been addressed through the development of the multiple scale Kalman �ltering

algorithm. The key to the algorithm is the development of a state-space model evolving over the

scales, i.e., the scale parameter is treated akin to time parameter of the usual state-space models,

such that description at a particular scale captures the features of the process up to that scale that are

relevant for the prediction of �ner scale features. The scale to scale decomposition can be schematically

depicted as a tree structure (Figure 1). To describe the model let us use an abstract index � to specify

the nodes on the tree and let 
� specify the parent node of � (see Figure 1). Then the multiple scale

stochastic process can be represented as

X(�) = A(�)X(
�) +B(�)W (�): (1)

The term A(�)X(
�) represents the interpolation or prediction down to the next �ner level and

B(�)W (�) represents new information added as the process evolves from one scale to the next.

Kalman �ltering technique is used to obtain optimal estimates of the states described by the multiple

1



X1 X1

X1
X1

X2 X2 X2 X2

X2 X2 X2 X2

X2 X2 X2 X2

X

Resolution 2

2 X2 X2 X2

X0

(1,1) (1,2)

(2,1) (2,2)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)

Resolution 0

Resolution 1

γλ

λ

Figure 1: (Left) The structure of a multiple scale random �eld is shown. The values at various grid locations
(i; j) are given as xm(i; j) where m is the resolution index. At the coarsest resolution (m = 0), the �eld is
represented by a single state vector, and generally at the mth resolution there are 4m state vectors. (Right)
Abstract representation of the multiple scale decomposition. The abstract index � refers to a node in the
tree and 
� refers to the parent node.
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scale model using observations at a hierarchy of scales. This scheme is schematically shown in Figure

2.

2. Estimation techniques which are based on minimizing a cost function, typically involving the vari-

ance, underestimate the variability and the resulting estimated �eld is smoother than the true �eld.

Therefore, conditional simulation rather than estimation, is used to characterize the variability of the

underlying �eld. The random �elds obtained by this technique preserve the observed values where they

are known and at the same time simulate the intrinsic 
uctuations at other locations that are consis-

tent with the mean and the covariance of the process. Given the wide utility of conditional simulation

technique for the usual one- and two-dimensional processes, how can we develop an algorithm for the

multiple scale framework?

This problem as been solved through the development of a multiple scale conditional simulation algo-

rithm. This allows us to construct synthetic �elds that are representative of the intrinsic variability of

the process. This uses a multiple scale model for the estimation error process whose parameters can

be explicitly computed. The conditional model reduces to the unconditional simulation model in the

absence of measurements, as should be expected. The conditionally simulated �elds can then be used

for several applications such as assessment of subgrid variability, inputs to physical models or design

of sampling strategies etc. These are of signi�cant importance for random �elds such as soil-moisture

which show signi�cant variability even at very small scales.

3. Given measurements at some large scale, how do we obtain simulated �elds at smaller scales that are

consistent with the measurements at the larger scale? This may be considered as a scale extrapolation

problem. The motivation for this problem is to provide a methodology to infer subpixel variability

from satellite based instruments which provide measurements at a resolution of the order of tens of

meters to kilometers.

This problem has also been solved and implemented for soil-moisture �elds. A state-space model

relating the soil-moisture with the underlying soil hydrologic properties is developed (see Figure 3) for

obtaining conditionally simulated random �elds at scales smaller than those at which measurements

are available. The soil moisture state is modeled as a mean-di�erenced fractional Brownian or fractal

process. Results using this technique for the Washita'92 data are shown in Figure 4.

In addition we are investiagting the relative roles of heterogeneity (the variations in soil-moisture due to

the underlying systematic variations of topography and soil-hydrologic properties) and stochastic variability

(variability not accounted for by the systematic variations) in the spatial organization of soil-moisture at

large scales. It is found that the variability due to the soil texture variation (systematic varaiation) is far

greater than either due to landuse or topographic index. In fact the mean values of soil moisture in di�erent

topographic index quantiles are indistinguishable.
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(b) Downward Pass(a) Upward Pass

Figure 2: Schematic of two-pass estimation in the multiple scale framework. First the upward pass propogates
information up the tree. At each tree node the estimate incorporates all measurements on that node (if
present) and its descendants. Then during the downward pass the information is propogated down the tree.
The estimates at each tree node are now based on information on all nodes on the tree.
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Figure 3: Figure showing the dependence of mean soil moisture for each hydrologic group on the available
water capacity for di�erent hydrologic groups for the June 10 and June 18, 1992 datasets.
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Figure 4: Estimation and conditional simulation of soil-moisture outside the measurement domain where
only AWC information is available (June 10, 1992) (a; Top, left) Original �eld at 256 � 256 grid. Notice
that the actual measurements lie on a subset of the domian.(b; Top, right) Available water capacity �eld
for the domain obtained from the STATSGO database. (c; Bottom, left) Estimated �eld (d; Bottom, right)
Conditionally simulated �eld.
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